Instrument calibration part 1: Laboratory

Alexander Cede, LuftBlick

Fifth Joint School on Atmospheric Composition September 14 – 29, 2023

"Forward Direction": From input flux to digital number

INPUT: Spectral Irradiance [W/m²/nm] = Energy received per time interval (J/s=W) per area (m²) per wavelength interval (nm)

\rightarrow Follow a monochromatic input

Flux at grating

Dispersion

Lower wavelengths reach the 2nd mirror at one end.

Higher wavelengths reach the 2nd mirror at the other end.

Telescope

Fiber optics

Spectrometer

Flux at 2nd mirror

Monochromatic light distributes over "some region" on the 2nd mirror. Not a Delta-function anymore ...

Telescope

Fiber optics

6

Flux at detector and electrons in detector

 $\mathsf{F}_{3L}(\mathsf{x}_{DE})$ 8000 Flux at detector is binned into pixels 4 5 6 7 8 9 10 PIXEL, POSITION AT DETECTOR, x_{DE} 12 13 11 3 Telescope Fiber optics **Spectrometer**

Transmission from detector to output signal

Counts for monochromatic input give "Slit (scatter) function".

Telescope

Fiber optics

Spectrometer

8

"Backward Direction": From digital number to flux

Dark offset and slope

(From thermal electrons)

(From electronics)

Dark correction

Linearity

(If you are lucky ...) Dark & bright signals increase ~ linearly with light input

(If you are less lucky ...) Your system is strongly non-linear

Non-linearity in Detector:

(Photon-induced or thermal) electron (e⁻) accumulation differs from the e⁻ generation due to saturation and/or recombination.

Non-linearity in ROE:

Caused by operational amplifier and AD-Converter

Linearity correction

Latency

Readings in a pixel are influenced by the readings in the previously read pixel

Pixel Response Non Uniformity (PRNU)

"What is the difference in the readings, if every pixel gets exactly the same input?"

For single pixels the PRNU is actually an effect of about ±1%. Here is is reduced since for this CCD 64 single pixels are averaged in the reading.

Spectral stray light

"Not all photons necessarily end up where they should."

Full slit (scatter) function

Video compiled and thankfully provided by

- Julian Gröbner and
- Natalia Kouremeti

Spectral sensitivity

Dispersion and resolution changes

- → In the lab we can determine the dispersion (which pixel corresponds to which wavelength) and resolution (width of slit function) of the system.
- → However these parameters usually change in the field (temperature, instrument setup, ...).
- → Due to the known structure of the solar spectrum, we can correct for this to some extent in the retrievals.
- → More in Michel's talk about calibration techniques applied in the field ...

Reference spectrum

Measured spectrum