Evaluation of climate and air quality models based on observations

aerosol extreme events, aerosol trends, ...

A. Mortier, MET Norway

Outline

- introduction (models, products, challenges, ...)
- some results
 - aerosol extreme events
 - aerosol trends
- an interactive evaluation interface: pyaerocom / AeroVal

Augustin Mortier, PhD

MET Norway, Climate and Air Quality department

augustinm@met.no

Experience & Activities

 Iidars/surp.
 aerosol trends, mouc.
 data visualization & web
 welopment lidars/sunphotometers (PhD thesis) aerosol trends, model evaluation

- policy support -(policy.atmosphere.copernicus.eu)
- model evaluation (aeroval.met.no)
- aerosol alerts (aerosolalerts.atmosphere.copernicus.eu)

Motivations for model evaluation

- How does my model perform? (strengths, weaknesses)
- How can I improve my model?

- \rightarrow Are there biases in my model's predictions?
- → How well does my model capture the variability? time/space patterns or trends
- \rightarrow How sensitive is my model to parameters?
 - Which parameter?
 - Where?
 - When?

Nobody likes a wrong model prediction

Models

"Air quality models use mathematical and numerical techniques to simulate the physical and chemical processes that affect **air pollutants** as they disperse and react in the atmosphere."

 \rightarrow CHIMERE, EMEP*, LOTOS-EUROS, MOCAGE, ..., + ENSEMBLE

regional, high resolution, good representation of emissions, transport and chemical reactions

"Climate models use quantitative methods to simulate the interactions of the important drivers of climate, including atmosphere, oceans, land surface and ice. They are used for a variety of purposes from study of the dynamics of the climate system to projections of future climate."

 \rightarrow Earth System Models: NorESM*, CanESM, CESM, GFDL, EC-Earth (IFS)...

global models, simplified chemistry, but several components

NorESM2 Vs EMEP MSC-W

Standard atm. model products: aerosol, gases, meteorological parameters

- 3D: time, lat, lon
- 4D: time, lat, lon,

elevation

- Air quality models
 - Concentrations
 - PM₁₀, PM_{2.5}
 - Chemical species: O₃, SO₂, SO₄, NO, BC, ...
 - Meteorological parameters: T, RH, P, precip., u/v, ...
- Climate models
 - Radiative fluxes
 - Optical and microphysical properties: AOD, scat/abs, ext(z), Size Distribution
 - Meteorological parameters: T, RH, P, precip., u/v, ...

Cesa Cesa CECMWF

Model evaluation

- \rightarrow comparisons
 - model VS ground-based obs.
 - model VS satellite

but methods also relevant for

- satellite VS ground-based obs → "validation"
- model v1 VS model v2 \rightarrow sensitivity tests

Observations

Challenges

- By nature
 - **observations** are **not perfect**: continuity, uncertainty, noise, outliers
 - models are not perfect: simplification of processes, uncertainty, outliers (and bugs)
 - representativeness (time, space):
 - deserts, oceans, forests / urban vs rural: local emissions
 - sunphotometer: wintertime?
 - **homogeneity** of measurements: observation networks (calibration, protocols)
 - wet VS dry: some in-situ instruments measure dried particles
- Technical
 - data access: ACTRIS RI, EBAS, ...
 - data reading
 - model: NetCDF
 - observations: anything (NetCDF, csv, excel, ...)
 - make sure things are **comparable**: units, point of view (attenuated backscatter profile)
 - o colocation: nearest neighbor, inter/extrapolation, time resampling
 - \circ concentration / deposition \rightarrow average / accumulate
 - o vertical coordinates: altitude VS layers / pressure

Some standard scores

unitless

Statistics		Range	Perfect Score
<u>R</u>	linear?	[-1,1]	1
<u>R Spearman</u>	monotonic?	[-1,1]	1
<u>NMB (%)</u>	deviation?	[-∞,+∞]	0
<u>MNMB (%)</u>	deviation? for small va	lu € ≌200,200]	0
<u>NRMSE (%)</u>	absolute error	[0,200]	0
FGE ab	solute erf@fwhen outlier	_s [0,2]	0

$$\mathrm{R} = rac{\sum_{i=1}^n (o_i - \overline{o})(m_i - \overline{m})}{\sqrt{\sum_{i=1}^n (o_i - \overline{o_i})^2} \sqrt{\sum_{i=1}^n (m_i - \overline{m_i})^2}}$$

$$ho = 1 - rac{6\sum_{i=1}^n (m_i - o_i)^2}{n(n^2 - 1)}$$

$$ext{NMB} = rac{\sum_{i=1}^n \left(m_i - o_i
ight)}{\sum_{i=1}^n o_i}$$

$$ext{MNMB} = rac{2}{n}\sum_{i=1}^n (rac{m_i-o_i}{m_i+o_i})$$

$$\mathrm{NRMSE} = rac{\sqrt{rac{1}{n}\sum_{i=1}^n(o_i-m_i)^2}}{\overline{o}}$$

$$ext{FGE} = rac{2}{n} \sum_{i=1}^n \left| rac{m_i - o_i}{m_i + o_i}
ight|$$

m: model, o: observation, n: number of points

Always plot your data

The Datasaurus dozen

Cesa Cesa CECMWF

Some charts

Cesa CECMWF

Some charts

Cesa Cesa Cecmwr

Some charts

- RMS_u: measurement uncertainty

- CRMSE: Centered Root Mean Squared Error

$$CRMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} [(M_i - \bar{M}) - (O_i - \bar{O})]^2}$$

Extreme Aerosol Events CAMS aerosol alerts service

CAMS Aerosol Alerts Service

CAMS Aerosol Alerts Service

Implemented by ECMWF as part of the Copernicus Programme	News Events Press Tenders Help & Support
Atmosphere Monitoring Service	Data About us What we do
Aerosol Alerts 🖾 Get alerts 🖾 Gallery 🗠 Evaluation (6) About	\$
city - level 1 - level 2 - level 3	Control Contro Control Control
« < Jan Feb Mar Apr	May Jun Jul Aug Sep Oct Nov Dec > >>

Cesa CECMWF

Does the model get it or not?

Cesa 🧶 CECMWF

Evaluation of extreme aerosol events

Does the model get it or not?

Forecasts Evaluation

This online evaluation, based on colocated observations, allows to explore the model performances in forecasting the aerosol alerts, by region and season.

Hit/Miss ratios

A Total Aerosols (AOD) - IFS-OSUITE - D+1 - NAMERICA - 2023 (AMJ)

Stations in selected region

	Absolute	Relative
Hit	28004	95.3 %
Miss	1383	4.7 %
TN	27394	93.2 %
ТР	610	2.1 %
FN	771	2.6 %
FP	612	2.1 %

Ξ

*

T/F P/N: True/False Positive/Negative; HSS: Heidke Skill Score

Aerosol Trends Evaluation Mortier et al., 2020

Study Period

Figure 1: Global AOD computed from model historical runs (Oslo CTM3, GFDL-AM4, CanESM5, CESM2, IPSL-CM6A, ECHAM-HAM) at monthly (gray lines) and yearly (black lines) resolutions, overlaid with the number of active observation sites in the AERONET sun photometer network.

Cesa CECMWF

Datasets

Observations

Parameter	Туре	Observation networks	Models
AOD	Column	AERONET ^I	ECMWF-Rean, NorESM2, SPRINTARS, ECHAM-HAM, GEOS, Oslo CTM3, GFDL-AM4, BCC- CUACE, CanESM5, CESM2, IPSL-CM6A
AOD _f	Column	AERONET	NorESM2, SPRINTARS, ECHAM-HAM, GEOS, Oslo CTM3, GFDL-AM4
AOD _c	Column	AERONET	ECMWF-Rean, NorESM2, SPRINTARS, ECHAM-HAM, Oslo CTM3, GFDL-AM4
AE	Column	AERONET	ECMWF-Rean, NorESM2, SPRINTARS, ECHAM-HAM, GEOS, Oslo CTM3, GFDL-AM4
PM _{2.5}	Surface	EMEP ² , IMPROVE ³	ECMWF-Rean, NorESM2, SPRINTARS, ECHAM-HAM, GEOS
PM ₁₀	Surface	EMEP, IMPROVE	ECMWF-Rean, NorESM2, SPRINTARS, ECHAM-HAM, GEOS
SO ₄	Surface	EMEP, IMPROVE, CASTNET ⁴ , CAPMoN ⁵ , EANET ⁶	ECMWF-Rean, NorESM2, SPRINTARS, ECHAM-HAM, GEOS, Oslo CTM3, BCC-CUACE
$\sigma_{\rm sp}$	Surface	GAW-WDCA ⁷ (incl. IMPROVE, NOAA FAN ⁸ , ACTRIS ⁹ , EMEP)	NorESM2, Oslo CTM3
$\sigma_{\rm ap}$	Surface	GAW-WDCA (incl. NOAA FAN, ACTRIS, EMEP)	NorESM2, Oslo CTM3

Table 1: List of observations and model datasets used in this study (see text for explanation).

Models

Model	Group	Natural interactive emissions	Anthropogenic emissions	Meteorology	Resolution (degrees)	References				
ECMWF-Rean	CAMS-Rean	D, SS	MACCity	RA	0.7×0.7	Inness et al. (2019); Zhang et al. (2009)				
SPRINTARS	AP3	D, SS, DMS, Oce VOCs	C: SO ₂ , BC, OC	N	0.56×0.56	Takemura et al. (2000, 2002, 2005)				
ECHAM-HAM	AP3	D, SS, DMS	C: SO ₂ , BC, OC	fSST	1.875 imes 1.875	Tegen et al. (2019); Neubauer et al. (2019)				
GEOS	AP3	D, SS, DMS, Oce VOCs	O: SO ₂ , SO ₄ , BC, OC, NH ₃	Ν	1.00×1.00	Bian et al. (2017); Chin et al. (2002); Colarco et al. (2010)				
Oslo CTM3	AP3	D, SS	C: SO ₂ , SO ₄ , BC, OC, NH ₃	S	2.25 × 2.25	Lund et al. (2018); Myhre et al. (2009)				
GFDL-AM4	AP3	D, SS, DMS, Oce & Veg OC	C: SO ₂ , SO ₄ , BC, OC	fSST&N	1. × 1.25	Zhao et al. (2018a,b)				
BCC-CUACE	AP3	D, SS, DMS	C: SO ₂ , BC, OC	F	2.8×2.8	Zhang et al. (2012, 2014); Wang et al. (2014)				
NorESM2	CMIP6	D, SS, DMS, MSA, VOCs	C: SO ₂ , SO ₄ , OC, BC	F	1.89×2.50	Seland et al. (2020); Kirkevåg et al. (2018)				
CanESM5	CMIP6	D, SS, DMS	C: SO ₂ , OC, BC	F	2.77×2.81	Swart et al. (2019)				
CESM2	CMIP6	D, SS, DMS _{clim}	C: SO ₂ , OC, BC	F	0.94 × 1.25	Danabasoglu et al. (submitted); Tilmes et al. (2019)				
IPSL-CM6A	CMIP6	D, SS, DMS _{clim}	*C: SO ₂ , BC, OC, NH ₃	fSST	2.50 imes 1.27	Lurton et al. (2019)				

Table 2: Information on models used in this study (CAMS-Rean: CAMS reanalysis, AP3: AeroCom phase III, CMIP6: historical experiments from CMIP6).

Region definition & Observation coverage

Figure 2: Distribution of the observations within the different regions considered in this study. The numbers reported within each region correspond to the maximum number of stations given for the observation networks, corresponding to the five observation types found in the legend.

Cesa CECMWF

Regional Time Series

Figure 3: Regional time series of AOD. The dark blue line corresponds to the median, and the light blue envelope is bound by the first and third quartiles of all valid points at the corresponding month, respectively. The blue dots correspond to the yearly averages which are used to compute the linear trend. The latter is displayed as a continuous line when the trend is significant and as a dashed line when it is not. Trend values, an error estimate and a significance value are given in each panel.

Cesa CECMWF

Trends calculations

Figure 5: Regional trends in the aerosol properties computed with the observation datasets. The color of the circles corresponds to the slope, while the radius indicates the p value. The largest circles represent the trends that are significant with a confidence level of 95%. The circles outlined in black indicate the trends associated with a representativity greater than 50%.

Cesa CECMWF

Figure 6: Regional trends in the aerosol properties computed with observations and models co-located in space and time with the observations. The error bars correspond to the uncertainty in the trend as calculated using both the uncertainty in the Theil–Sen slope and the residuals. The bold font indicates that the trends are significant at a confidence level of 95% (p value < 0.05).

Cesa 🧶 😂 ECMWF

CECMWF

OBS ECMWF-Rean SPRINTARS **Trends evaluation** ECHAM-HAM GEOS OsloCTM3 EUROPE NAMERICA SAMERICA NAFRICA ASIA NorESM2 10 CanESM5 -1.5 -0.8 8 0 3 4 ~ ~ ~ ~ -1.1 -0.9 -1.3 -1.6 9 -1.8 5 9 5 2.8 3.0 -1.6 9 -1.2 0.2 8 3.1 3.7 30 N N N N 0 é N P M M M NO 77 - -N AOD 0 0.01 N 4 0 0.-0 -18 -2.1 -2.1 -2.6 -2.6 2.6 -0.6 4.0 00 00 00 h N -1.7 1.6 4.4 3.9 4.1 -1.9 0.8 -0.3 1.1 1.4 N---N AODf 0 II Ú 10.00 Ψ. 1 1 4 0 --18 9.0 9.0-2.2 -1.6 -1.3 1.8 0.6 3.1 2.9 2.1 3 00 N NN AODc 0 п 9 4 00 00 (1 3 ~ N 00 00 +8.5 +7.5 6 00 N 10 N n n NT Ö 14 4 ÷ -18 -0.5 0.8 0.9 N 10 -0.6 -0.3 0.9 0.2 0 0.6 0.2 1.4 -0.7 -3.1 000 o. N 0 o AE ШC. 0 **** +0.2 +0.5 +1.4 +0.4 +0.5 +0.5 N 3 +1.2 3 +0.6 +0.2 +1.1 0 Ŧ. T --10 eesa 🧶

Representativeness of observed trends \rightarrow model subset selection

Figure 4: Three regional AOD time series and respective trends, constructed from model data (NorESM2) for the investigation of the representativity of the observational data. Panels (a) and (b) correspond to the number of points used to compute the regional time series for the three different datasets. Panels (c) and (d) show the time series, the trends and the resulting representativity value (black, bold). The blue color (Reftime) corresponds to the model output co-located in space and time with the available observations. Panels (a) and (b) show an overall increase in the number of available observations (more stations) combined with a seasonal cycle (less AOD available in wintertime). The orange color (Exptime/Refspace) corresponds to the model output co-located in space with the stations providing measurements, using the complete time series from 2000 to 2014. The green color (Expspace) corresponds to the model output in the whole geographic region (see Fig. 2), using all of the grid boxes without any co-location with the observations Cesa CECMWF

Modelled trends

Figure 7: Global trends in aerosol properties using NorESM2 data regridded at a 5° × 5° resolution. The blue and red dots indicate significant negative and positive trends, respectively.

Cesa CECMWF

Modelled trends

Figure 8: Absolute trends in OD and emissions of the main aerosol species computed with NorESM2. The y axis of the trends in OD and the emissions is given according to the power of 10 indicated at the top left corner of each of the subplots.

Cesa CECMWF

pyaerocom / AeroVal an interactive evaluation interface

pyaerocom / AeroVal

Motivations

~2 years ago - Gliß et al., 2021: <u>AeroCom</u> phase III multimodel evaluation of the aerosol life cycle and optical propertie using ground- and space-based remote sensing as well as surface in situ observations

(https://acp.copernicus.org/articles/21/87/2021)

- models: 13 + ENSEMBLE (Mean/Median)
- observations:
 - remote sensing: AERONET, satellites (MODIS, AATSR, Merged-FMI dataset)
 - in situ: EBAS (Scat./Abs. Coef.)

How to interpret all of this?

 \rightarrow exploratory/evaluation tool

									W	DRLD	- 201	0								
	AATSR4.3-SU	-21.5	-22.5	-43.7	-1.4	-36:9	-2.2	-24.5	-29.6	-34.7	40.3	-21.6	-1.8	-42.6	-67.7	-34.2	-22.6	-8.9	1.4	
AE	AeronetSun	-11.1	-9.9	-26.6	5.7	2.1	1.7	-23.2	-25.0	-9.3	35.3	-1.7	4.1	-20.3	-61.3	-11.4	-20.6	-11.2	3.6	
	AATSR4.3-SU	-12.8	-17.0	-36.6	7.1	-17.7	-5.4	-6.4	11.7	-18.2	-34.4	-14.8	-8.0	-17.6	10.4	-9.1	-12.3	-55.2	-1.8	
	AeronetSun	-18.8	-20.6	-40.5	-0.7	-36:8	-5.5	-27:3	-14.6	-17.4	-9.8	-0.9	-4.6	-25.5	3.0	-46.4	-5.9	-50,4	1.1	
	MERGED-FMI	-12.2	-16.3	-36.4	8.2	-22.2	-6.6	-4.1	11.3	-20.1	-33.7	-14.1	-3.8	-11.7	11.4	-5.5	-11.1	-57.1	-2.8	NMB
AOD	MERGED-FMI-LAND	-12.5	-17.3	-37.5	6.7	-25.8	1.4	-30.7	-13.1	-15.1	-16.1	-0.8	2.1	-25.1	9.3	-25.9	0.4	-37.9	2.8	
	MERGED-FMI-OCN	-11.3	-15.2	-35.3	9.7	-18.8	-9.8	10.6	25.1	-21.5	-42.5	-20.6	-6.6	-4.7	13.4	6.0	-17.4	-66.5	-5.2	
	MODIS6.1-aqua	-27.2	-30.6	-47,5	-10.1	-36:7	-22.4	-20.8	-8.7	-34.5	-44,5	-28.0	-18.9	-26.1	-8.0	-22.4	-25.4	-64.3	-19.1	
	MODIS6.1-terra	-33.6	-36.7	-52-2	-18.1	-42.3	-29.3	-27.8	-16.8	-40.4	-49.5	-34.4	-26.1	-32.7	-16.2	-29.4	-32.1	-67,5	-26:3	
AODf	AATSR4.3-SU	-10.7	-17.4	-39.5	8.3	-28.0	4.1	19.9	3.4	-39.8	-10.9	-27.9	22.3	-24.2		-28.5	5.5	-37.7	3.4	
HUDI	AeronetSDA	-9.0	-13.0	-33.7	9.2	-31.1	4.7	11.4	-20.9	-10.7	20.4	-11.3	27.1	-18.5		-35.8	10.4	-35.8	8.4	
AODe	AATSR4.3-SU	-17.2	-26.5	-55,5	7.2	-2.0	-19/7	-27.8	24.3	14.5	-69,8	5.0	-53.7	-7.7		43.9	-39.1	-81.6	-9.8	
HODE	AeronetSDA	-36.0	-46.2	-66.5	-17.4	-47.7	-22.8	-56.8	-2.3	-32.9	-67,5	24.7	-65.1	-43.4		-17.6	-46.5	-83.7	-14.4	
Abs coef	EBAS-2010	-14.9	-21.3	-38.3	3.0	-41.8	9.0	-23.4	-36.4	21.7	-35.1	-29.1	23.7	-7.4		-50.9	56.0	-52.3	2.3	
	EBAS-CLIM	-14.7	-20.3	-38.2	1.9	-40.4	5.7	-14.8	-28:3	16.1	-28.2	-27.9	20.7	-5.5		-47.6	58.2	-54.9	1.0	
Scat. coef. (dry	EBAS-2010	-36.2	-41.5	-63.8	-20.4	-43.3	-21.5	-64.6	-69.7	15.9	-46.7	-12.2	-27.8	11.9		-65.6	-19.6	-66.9	-22.8	
and over (u)	EBAS-CLIM	-28.6	-34.7	-59.0	-10.9	-32.2	-12.6	-51.7	-63.7	12.5	-45.7	-3.5	-17.4	18.0		-61.4	-11.4	-62.6	-13.9	

AeroVal overall evaluation heatmap, adapted from Gliß et al., 2021

pyaerocom / AeroVal

About

"

pyaerocom: python library (\geq 3.6) for **processing** and **plotting** of data [related to the **AeroCom** project].

This includes support for reading and processing of **model data** (e.g. AeroCom, EMEP, ...), **satellite data** (e.g. MODIS, AATSR, ...) and **ground based observation** datasets (e.g. AERONET, EBAS, EARLINET, Ghost, AirNow, MarcoPolo, EEA, ...).

In addition, pyaerocom provides tools for **colocation** and **cross evaluation** of different datasets using **commonly used statistical metrics** such as several biases, gross-errors, or correlation

coefficients.

https://github.com/metno/pyaerocom

import pyaerocom as pya

obs_reader = pya.io.ReadUngridded('AeronetSunV3Lev2.daily')
od550aer = obs_reader.read(vars_to_retrieve='od550aer')
plot station coordinates

od550aer.plot_station_coordinates();

Cesa 🦉 CECMWF

pyaerocom / AeroVal

Conclusion

Conclusion

Some take home messages

- Important to evaluate model (in the present/past) to determine forecasts reliability
- Model evaluation highlights strengths and weaknesses of models → model improvement
- Challenges
 - Measurements representativeness
 - **Colocation** (time resampling, space)
- Scores: R, NMB, RMSE, ...
- Charts: visualization of data / scores

Look at you data from different angles

Cesa 🦉 CECMWF